
Addendum No. 4

ACADEMIC VACANCIES PUBLIC INFORMATION

Field Name Details

Faculty Mathematics and Computer Science

Department Computer Science

Position number in the establishment plan 100

Position Teaching assistant (3-year fixed-term contract)

Academic subjects in the position description/

research areas, as listed in the establishment plan

Algorithms and Programming (English)

Fundamentals of Programming (English) Object

Oriented Programming (English)

Data structures and algorithms (English)

Branch of science Computer science

Position opening description Teaching assistant, 100, Department of Computer Science. The position of

teaching assistant involves carrying out teaching activities, scientific

research and student coaching, as well as providing services to the

academic community.

Applicants for the vacant position of teaching assistant must have a

scientific expertise in line with the standards for the Computer science field

and the disciplines of the position. Applicants must also include proof of

proficiency in English (C1 level or documents attesting to studies or

research placement abroad for a total duration of at least 9 months, in

education or

research institutions where English was the main language used).

Responsibilities Teaching activity: seminar, laboratory, projects, coaching, assessments,

exams, creating teaching materials for the disciplines of the position.

Scientific research activity:

• participation in at least one research seminar within the faculty;

• participation in research grants competitions;

• publication, in each 4-year period of at least 5 BDI indexed

articles/studies (Mathematical Reviews/ MathSciNet, ZMath (Emis),

Computing Reviews, IEEE Xplore, DOAJ, SCOPUS, DBLP) of which at

least 2 are ISI or SCOPUS indexed or published in relevant international

conference proceedings (ACM, IEEE, AMS, EMS).

The student coaching activity: supervising theses, tutoring groups of

students, coordinating students’ participation in the activity of scientific

circles and in student competitions.

Services for the academic community: taking part in actions

carried out by the department, faculty and university (promotion of the

admission, collaboration with the economic environment, etc.).

Date and time of the oral examination 28.01.2020 at 12:00 p.m.

Oral examination location Department of Computer Science 58-60 Teodor Mihali Street, room

C335

Examination date, time and place for academic

position opening

Selection process for the TEACHING ASSISTANT academic position:

1. Assessment of application file;

2. Oral examination;

3. Written examination.

The oral examination consists in delivering a seminar/ laboratory/ practical

work project presentation. Based on the position theme and bibliography,

the Committee establishes the topic of the presentation to be delivered

during the oral examination and communicates it to the candidates 48

hours prior to the examination date by email and by posting it on the

faculty display board and website, indicating the date and time of posting,

signed by the chair of examination committee. The minimum duration of

the oral examination delivered by the candidate is 30 minutes; the exam

must also include a question and answer session by the committee and/or

the public;

Exam 1 - Written test (in English): 28.01.2020, at 8:00 a.m., Department of

Computer Science 58-60 Teodor Mihali Street, room C335.

Exam 2 - Oral examination (in Romanian): delivering a seminar/

laboratory/ practical work project presentation - 28.01.2020, at 12:00 a.m.,

Department of Computer Science 58-60 Teodor Mihali Street, room C335.

If there are several candidates, the committee will decide the order in

which they will take the oral examination.

The application file, oral examination and the written examination will be

calculated in equal proportions towards the final score given in the

application assessment report

written by each member of the examination committee;

The topic and bibliography for the academic position

selection process

Exam 1 – Written

examination on a given

topic:

Fundamentals of programming, Object-oriented programming, Data

structures

1. Fundamentals of programming

Sub-algorithms: specification, testing.

Algorithm classes: searching, sorting, interclass correlation.

Algorithm design methods: top-down, successive refinement.

Sub-programs, call and pass parameters (by value and reference).

Programming techniques: Backtracking, Divide et impera, Greedy.

Modular programming: module, interface, implementation; in C/C++,

Java, Python.

2. Object-oriented programming

 Classes, objects.

Inheritance, polymorphism.

Interface based programming.

3. Data structures Abstract

data type (ADT).

ADT Array, Collection, List, Stack, Queue, Dictionary. Specification

of ADT.

Implementations for ADT using: vectors, linked lists, binary trees.

Bibliography:

1. M. Frenţiu, B. Pârv, Elaborarea programelor. Metode şi tehnici

moderne, ProMedia, Cluj-Napoca, 1994

2. M. Frenţiu, H.F. Pop, G. Şerban, Programming fundamentals, Cluj

University Press, 2006

3. T. Cormen, C. Leiserson, R. Rivest: Introducere în algoritmi. Cluj-

Napoca: Editura Computer Libris Agora, 2000

4. B. Eckel, Thinking in C++, vol I şi II, http://www.mindview.net

5. B. Eckel, Thinking in Java, http://www.mindview.net

6. M.A. Ellis, B. Stroustrup, The annotated C++ reference manual,

Addison-Wesley, 1994

7. The Python language reference.

http://docs.python.org/py3k/reference/index.html

8. R.S. Pressman, Software engineering. A practitioner’s approach,

6th ed., McGraw-Hill, 2005

Exam 2 – Oral examination: delivering a seminar/ laboratory/

practical work project presentation

Topics:

A. Algorithms and programming

1. Introduction to software development processes

2. Procedural programming

3. Modular programming

4. User defined types

5. Principles of design and programming

6. Object-oriented programming

7. Software design

8. Software testing and inspection

9. Recursion

10. Algorithm complexity

11. Searching and sorting algorithms

12. Problem Solving Methods (I) - Backtracking, Greedy

13. Problem Solving Methods (II) - Divide & Conquer, Dynamic

Programming

Bibliography:

1. M.L. Hetland, Beginning Python: From Novice to Professional, Apress,

2005.

2. M. Frentiu, H.F. Pop, Fundamentals of Programming, Cluj

University Press, 2006.

http://www.mindview.net/
http://www.mindview.net/
http://docs.python.org/py3k/reference/index.html
http://docs.python.org/py3k/reference/index.html

 3. K. Beck, Test Driven Development: By Example. Addison- Wesley

Longman, 2002.

http://en.wikipedia.org/wiki/Test-driven_development

4. M. Fowler, Refactoring. Improving the Design of Existing Code,

Addison-Wesley, 1999. http://refactoring.com/catalog/index.html

5. The Python Programming Language - https://www.python.org/

6. The Python Standard Library -

https://docs.python.org/3/library/index.html

7. The Python Tutorial - https://docs.python.org/3/tutorial/

B. Fundamentals of programming

1. Introduction to software development processes

2. Procedural programming

3. Modular programming

4. User defined types

5. Principles of design and programming

6. Object-oriented programming

7. Software design

8. Software testing and inspection

9. Recursion

10. Algorithm complexity

11. Searching and sorting algorithms

12. Problem Solving Methods (I) - Backtracking, Greedy

13. Problem Solving Methods (II) - Divide & Conquer, Dynamic

Programming

Bibliography:

1. Kent Beck - Test Driven Development: By Example. Addison- Wesley

Longman, 2002.

2. Kleinberg and Tardos – Algorithm Design. Pearson Educational,

2014 (http://www.cs.princeton.edu/~wayne/kleinberg-tardos/)

3. Martin Fowler - Refactoring. Improving the Design of Existing Code.

Addison-Wesley, 1999. (http://refactoring.com/catalog/index.html)

4. Frentiu, M., H.F. Pop, Serban G. - Programming

Fundamentals, Cluj University Press, 2006

5. The Python language reference.

(https://docs.python.org/3/reference/index.html)

6. The Python standard library.

(https://docs.python.org/3/library/index.html)

7. The Python tutorial.

(https://docs.python.org/3/tutorial/index.html)

C. Object-oriented programming

1. Basic elements of C language

2. Modular programming in C/C++

3. Object oriented programming in C++.

4. Derived data types and user-defined types, dynamic allocation in C++.

Elements of generic programming

5. Inheritance

6. Polymorphism

http://en.wikipedia.org/wiki/Test-driven_development
http://refactoring.com/catalog/index.html
http://www.python.org/
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/)
http://refactoring.com/catalog/index.html)

 8. Class hierarchies

9. Graphical user interface (GUI)

10. Event-driven programming (Events: Qt signals and slots; GUI design

software; Callback/Observer)

11. Event-driven programming (Custom graphic components; MVC

template; Predefined models)

12. Design templates

Bibliography:

1. B. Stroustrup. The C++ Programming Language, Addison Wesley,

1998.

2. Bruce Eckel. Thinking in C++, Prentice Hall, 1995.

3. A. Alexandrescu. Programarea moderna in C++: Programare generica si

modele de proiectare aplicate, Editura Teora, 2002.

4. S. Meyers. Effective C++: 55 Specific Ways to Improve Your Programs

and Designs (3rd Edition), Addison-Wesley, 2005.

5. S. Meyers. More effective C++: 35 New Ways to Improve Your

Programs and Designs, Addison-Wesley, 1995.

6. B. Stroustrup. A Tour of C++, Addison Wesley, 2013.

7. C++ reference (http://en.cppreference.com/w/).

8. Qt Documentation (http://doc.qt.io/qt-5/).

9. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software, Addison-Wesley

Longman Publishing, 1995.

D. Data structures and algorithms

1. Introduction Data structures. Static, semi-static and dynamic data

structure.

2. Data types: domain, operations and data representation

3. Fields

4. Abstract Data Types - ADT Collection, ADT Dictionary, ADT Stack

and Queue, ADT Priority Queue

5. Linked Lists - ADT List, Linked List

6. Heap

7. Hash Table

8. ADT Tree - Binary tree

9. Binary search tree

10. Self-balancing binary search trees

11. Applications and data structures in various programming languages

(Python, C++, Java, C#)

Bibliography:

1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to

algorithms, Third Edition, The MIT Press, 2009

2. S. Skiena: The algorithms design manual, Second Edition, Springer,

2008

3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk

Publications, 2016

4. M. A. Weiss: Data structures and algorithm analysis in Java, Third

Edition, Pearson, 2012

5. R. Sedgewick: Algorithms, Addison-Wesley Publishing, 1984

Description of the selection process Examination Committee

the following criteria:

assesses candidates taking into

accou

nt

the

http://en.cppreference.com/w/)
http://doc.qt.io/qt-5/)

 • Content of the application file;

• Oral examination (Exam 1)

• Oral examination (Exam 2).

The final grade of each applicant is calculated as the arithmetic mean of

the scores obtained according to the above criteria.

Each member of the committee (including the chair) draws up an

individual assessment report giving a final grade for each applicant.

Eligible applicants must obtain:

• at least grade 6 (six) for each criterion;

• the final grade at least 7 (seven) given by each reviewer;

• average score at least 8.50 (eight and 50%).

The chair of the selection committee draws up a report on the selection

process in which they indicate the final grades assigned to the applicants

by the members of the committee and the average score obtained by each

applicant, calculated as the arithmetic mean of the final grades assigned in

the individual assessment reports. The average score thus obtained

constitutes the result of the selection competition for each applicant. The

selection competition committee establishes the ranking of applicants

based on the final average score and nominates the eligible applicant who

has obtained the best result in the selection competition. The chair of the

selection competition committee submits the report on the selection

competition to the secret ballot of the members of the committee.

Following the secret ballot, the chair takes note of the result of the vote,

communicates it to the members of the committee and indicates it at the

end of the report on the selection competition, specifying the number of

votes “for” and “against”, respectively, the votes cast remaining secret. If

the “for” vote is not given by a majority of the members of the committee,

the position put up for the selection competition will not be filled by any of

the candidates. The report on the selection competition is signed by each

member of the selection competition committee and by the

chair of the committee:

Head of department,

Professor Laura DIOŞAN, PhD

